JOURNAL OF COMPUTATIONAL PHYSICSL44,710-726 (1998)
ARTICLE NO. CP986011

Coupling of the Boltzmann and Euler Equations
with Automatic Domain Decomposition

S. Tiwari

Fachbereich Mathematik, UniveréitKaiserslautern, 67663, Kaiserslautern, Germany

Received September 3, 1997; revised April 14, 1998

A criterion for automatic domain decomposition has been introduced for the
coupling of the Boltzmann and Euler equations. This criterion is obtained by
using the Grad’s 13-moments expansion method. The Boltzmann and Euler equa-
tions have been solved by the particle method. This criterion has been further tested
for the spatial homogeneous relaxation case and the coupling of the Boltzmann and
Euler equations in two dimensional physical space. Some numerical results obtained
from the particle code of the full Boltzmann equation are compared with those of
coupling of the Boltzmann and Euler equations; 1998 Academic Press

1. INTRODUCTION

In the kinetic theory of gases the Boltzmann equation gives the accurate descriptic
a rarefied gas flow. To predict a hypersonic flow past a body flying at high altitude «
considers usually the Boltzmann equation. Due to the complexity of this equation one
to solve it by some numerical methods. The most widely used numerical methods for
Boltzmann equation are particle methods, like the Direct Simulation Monte Carlo Mett
(DSMC) [2], the Finite Pointset Method (FPM) [1, 17], and some weighted particle meth
[18, 19]. Inthe case of particle methods the mean free path of a particle (the average dis
traveled by a molecule between collisions) is an important parameter. For example, it
reentry phase of the space shuttle into the atmosphere the gas becomes denser and
so that the mean free path becomes smaller and smaller, which leads to a high compu
time of a particle code for the Boltzmann equation. In fact, in the discretization of 1
Boltzmann equation a mesh size and a time step are proportional to the mean free pat
to stability and accuracy of the numerical solution.

Fromthe classical theory, asthe mean free path tends to zero, the solution of the Boltzi
equation tends to a local Maxwellian distribution, in which the parameters are the
proximate solutions of the compressible Euler equations. But in this regime, there
some regions, where the particle distribution function is far from a local Maxwelli
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COUPLING BOLTZMANN AND EULER EQUATIONS 711

distribution so that the limiting equations are not valid everywhere. In such a situati
one has to solve the Boltzmann equation only where it is necessary and the limi
equations wherever possible. This gives rise to two problems. The first one is to d
mine the domains of validity for these equations and the second is to solve these equs
in the corresponding domains of validity. This means that the first problem corresponc
the domain decomposition of the Boltzmann and fluid dynamic equations and the seco
solving matching (or coupling) problems. Moreover, one has to choose the suitable nur
cal methods for matching these two equations. Therefore the challenging task is to de
a hybrid code, which switches automatically from the fluid dynamic code to the Boltzm:
code and vice versa.

In the past ten years many works have been reported with reference to both [
lems. In the coupling of the Boltzmann and Euler equations or that of Boltzmann :
Navier—Stokes equations most of the authors have decomposed the computational d
apriori[15, 3, 4, 12, 20]. They assumed a Boltzmann domain in the vicinity of the body
that of Euler or Navier—Stokes away from the body. During the simulation of these equat
the corresponding domains of validity do not remain fixed as shown in Fig. 4. Theref
one needs criteria for domain decomposition. Tivedial. [22] have proposed the Sobolev
norm as a criterion for the same. This criterion gives a correct domain decomposition
its computational cost is very high compared to the criterion proposed in this paper [2.

The main objective of this paper is to develop a criterion for domain decomposit
which has a low computational cost in comparison to the Sobolev nhorm and gives
required results. We have used the criterion which is obtained from Grad’s 13-Momq
expansion and can be monitored during the simulation. This criterion gives the suit
domain decomposition of the Boltzmann and fluid dynamic equations. We restrict ourse
to the coupling of the Boltzmann and Euler equations.

We organize the paper as follows. In Section 2, we give a short description of
Boltzmann and Euler equations and their numerical methods. In Section 3 we deri
criterion for a local thermal equilibrium. Finally, the coupling algorithm and some of tl
numerical results are given in Section 4.

2. THE EQUATIONS TO BE COUPLED AND NUMERICAL METHODS

2.1. The Boltzmann and Euler Equations

The Boltzmann equation is the time evolution of a distribution functigh x, v) for
particles of velocityy € R, at pointx € @ c RY(d=1, 2, 3), at a timet € R, and is
given by

ﬁ+v-fo=}J(f,f), Q)

at €

with

J(f, f):/ / kK(Jv—w]|, [ f(t, x,v)f,x, w)— f,x,v)f, x, w)]do(n) dw,
JRPJS

where

v/ = Tv,w(n) =0V — 71(77, v — w)a w/ - Tw,v(n)a (2)
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neS={neR®|n =1, (v—w,n)>0}k(v—wln) is the collision scattering kernel,
which describes the actual interaction potential. We have considered the hard sphere r
which is given by

k(lv —wl,n) = (v—w,n) =0.

The constant is proportional to the mean free pathFor more detail about the Boltzmann
equation, we refer to [7]. IE approaches zero, one can prove [6] that the Boltzmatr
distribution functionf tends to a local Maxwellian

P _ lo-u?

fu i= fulp w. TI00 = G prsze =

3

whereR denotes the gas constant and the parametérs), u(t, x), T (t, X) approximate
the compressible Euler equations:

+Z—(pU)— )
9 I(pRT) .
¢ (P >+Z Sy + == =0 Asi<d ®)

e ) et 0o

In the coupling of these equations when we solve both of them by the particle methods
can use the same initial and boundary conditions. The initial condition is given by

f(0, X, v) = fo(X, v). ©)

2.2. The Boltzmann Solver

We solve the Boltzmann equation by a particle method proposed by Babovsky [1]
described in [17]. The particle scheme for this equation is based on the time splitting of
equation. The first step consists of solving the free transport equations tn0At

of
54‘1) fo—O (8)

and the second consists of solving the equation

of 1

— = =J(f, ). 9
i LR 9)
The patrticle simulation of (8) is based on the approximation of the initial derfigiy; v)

by a discrete measure (a sum of Dirac masses)

N
fo(x, v) & Y a8 (X — X (0)8 (v — i (0)), (10)

i=1
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whereN is the number of particles with weights. We have normalized the total mass o
particles to 1 and considered the equal weight of all particles satkal/N for alli. The
positionsx; (At) of particles change (during the free flow only) as per the following relatic

X (At) = % (0) + At - v (0), (11)
where velocities change during the collision step. In the free flow step one has to con:
boundary conditions.

For the simulation of (9) we introduce a spatial mollifier since the collision integt

J(f, f) is a local operator in space and time. We divide the computational domain i
many regular cell€ where the densityf (t, X, v) is substituted byfc (t, v) for x € C and

1 .
fc(t, U) = W(C)/C f(t, y, U) dy (12)

Now, it is sufficient to describe the particle simulation of the following spatially homog
neous Boltzmann equation

or _ %J(f, f). (13)

ot

For the sake of simplicity, we rewrité instead offc. To derive the particle scheme for
(13) we used the explicit Euler discretization and obtained

f(At,v) = F(0,v) + At;](f, £)(0, v). (14)

To obtain a particle approximation one has to consider the weak formulation of (14)
multiplying by a test functiord and integrate it with respect to

/ <I>(v)f(At,v)dv:/ ¢(v)f(0,v)dv+At/ ®W)J(f, )0, v)dv. (15)
R3 R® R®

Now, assuming thatf | = 1 and using the decompositiah( f, f) =J*(f) — fL(f), we
have

/dD(v)f(At,v)dvz/ / ®(v) f(0,v) f(O, w)dwdv
R® R® JR®
+At/ d()IT(F)(O, v)dv
R3
—At/ ®@)L(f)(0, v)duv, (16)
R3
where
J+(f):}/ / k(jv — wl, n) (0, v") f (0, w") dw () dw
€ Jrd /2

1
L(f) = 2/11@3/52 k(lv — wl, n) (0, w) dw(n) dw.
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In the integral over the gain terdi™ we can use the collision transformations (2) to chang
the variable(v, w) into (v/, w’) and obtain

//CI>(v)k(|v—w|,n)f(0,v’)f(0,w')dwdv
R3 JR®
=/ / ®(W)Hk(lv — wl|, n) f(0, v) f (0, w) dw dv. a7)
RS JR®
From (16) and (17) we obtain
/(D(U)f(At,v)dv
RS
:///d>(v)(l—Atk(|v—w|,r)))f(O,v)f(O,w)dw(n)dwdv
R® JR® /2
+/ / / ®(W)Atk(Jv — w|, n) f(0,v) f (0, w) dw(n) dw dv. (18)
R®*JR® /S

In order to guarantee the positivity of the functibAt, v) we need the restriction on time
step which must satisfy

At
1-—k(v—wl,m=0. (19)
€

Assuming the condition (19), we introduce an artificial variatas the interval [0, 1] and
a appropriate mapping to transform (18) into

/Cb(v)f(At,v)dv

R3

=/// (@ 0 W) (v, w, 1,9 F (0, v) F (O, w)ds dw(y) dwdv,  (20)
R® JR® /< J[0.1]

where

v, if Atk(lv—wl,n) <s

21
v, else (21)

Vv, w,n,S) = {

This leads to the following time discretized equation for the corresponding measures
pat = (ho X o X © x v) o W1, (22)

wherew denotes the surface measureﬁnandv the uniform measure on [0, 1].
For a particle simulation we considered first a particleiggtvhich yielded an approxi-
mation of f (O, v), i.e.,

f(O,v) =6, =

Z| =

N
PRICEE ()] (23)
i=1
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where all particles have equal weighfNL Next, one approximates the product measul
at With the help ofug. For details of this procedure we refer to [1, 17].

2.3. The Euler Solver

We solve the Euler equations also by the particle method based on the kinetic sch
Earlier workers [8, 9, 11], have reported this scheme in detail. It is the direct consequ
of the solution scheme for the Boltzmann equation. The main idea of the kinetic schen
that one considers the problem on a kinetic level or in a position-velocity space and de
the macroscopic quantities as moments of the derfgityx, v) by

p(t,x):/ f(t, x, v)dv, (24)
RS
pu(t,x):/ vf(t, X, v)dv, (25)
RS
_ 1 2
T(t,X) = 3[0—F2/1;3 |U — U| f(t,X, U) dU, (26)

finding a simple evolution for the densitf such that this evolution approximates the
compressible Euler equations feru, andT. This evolution also consists of two steps a
in the case of the Boltzmann equation. The first free flow step is exactly the same as i
case of the Boltzmann equation. In the second step we consider the relaxation.

J(f, f) =0, (27)

where the solution of the Boltzmann equation is relaxed to a thermodynamic equilibr
(a local Maxwellian) whose parameters solve the compressible Euler equations. In
step we compute the macroscopic quantipesi, T as moments of the solution of the
free transport equation and then generate the particles according to a local equilib
distribution function such that the conservations of mass, momentum, and energy hol
an equilibrium distribution function one considers usually a Maxwellian. The computatio
time for a generation of particles according to a Maxwellian is larger than the collis
process. In this case, an equilibrium distribution function proposed by Kaniel is m
convenient. The numerical results obtained from both functions are very close. The func
for a monoatomic gas, proposed by Kaniel, is given by [11]

3
fx = { i GRO v — Ul < V5RT o8

0, [lv —u| > +/5SRT.

3. THE CRITERIA FOR A LOCAL THERMAL EQUILIBRIUM

Since the Euler equations can be approximated from the Boltzmann equation if part
are distributed according to a local Maxwellian or near enough to it, we need a tes
determine whether a particle distribution is close enough to a local Maxwellian, that is
a local thermal equilibrium, or not.
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For a criterion of equilibrium, we assume that the distribution funcfién x, v) deviates
from a local Maxwellian. Suppose

f = ful+e). (29)

Local thermal equilibrium can be assumed df|| <« 1, with some appropriate norm. This
suggests defining a Hilbert space, where the scalar product is [7]

fu —
<¢>,w>=/ s du (30)
R 0

and the corresponding norm is given by

fu 1/2
lol = (/R 7|¢|2dv) : (31)

While deriving fluid dynamic equations from the Boltzmann equation, the moments cat
defined by [7]

|vf?

,0:/ f dv, pu:/ vf dv, pE = —fdv (32)
R? R® R® 2
1 2 t
qg==/ (v—uw|v—u|“fdv, T = v—w@-u fdv—ps, (33)
2 Jre R®
whereE is the specific energy is the heat flux vector; the stress tensop the static

pressure, andl; is the Kronecker symbolv — u)' denotes the transpose of the veateru.
We assume that the first five momeptau, E of f are those offy. Then

pfmdv =0 (34)
R3
/ vpfmdv =0 (35)
JR®
/ lv|?¢fy dv = 0. (36)
R3
We also have

}/ (v —ulv—ul®pfydv =q (37)

2 R3
/ v —uw—wgfydv =1 (38)

]RS

The non-vanishing of the stress tensoand the heat flux vectay are due to deviation
from a Maxwellian distribution. Thuspfy, describes the deviation from a Maxwellian
distribution.

With the help of the above 13 equations (34)—(38) we intend to expriesspolynomial,

p=a+bv—u+@w-—ulChw—u)+(d v—uv—u? (39)

wherea is a scalarb, d are vectors ifR®, andC is a(3 x 3) symmetric matrix.
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This is the Grad’s 13 moments expansion method [10]. Now, substit#ting34)—(38)
one can compute all the coefficients of the polynomial (39) and gets [21]

¢:

,o—u [|v—ul?
@ ) [l | T11(v1 — U1)? 4 T20(v2 — Up)?

1
o(RT)2 | 5RT }+2,0(RT)2[

— (11 + 722) (v3 — Ug)®] + [t12(v1 — U1)(v2 — Up)

p(RT)2

+ T23(v2 — Up)(v3 — U3) + T13(v1 — Up) (V3 — U3)]. (40)

We are interested in estimating the quanli$| with the help of the norm defined in (31).
In order to calculate the integral on the right hand side of (31), we write (40) in the forr

lv —ul? N 1
5RT 2p(RT)?

¢ [T12(v1 — Up)?

= p(RT)Z{lcﬂ |v—u|cos€(

+ T22(v2 — U2)® — (T11 + T22)(v3 — Ug)?] + [t12(v1 — U1)(v2 — Up)

1
p(RT)?

+ T23(v2 — U2)(v3 — U3) + T13(v1 — Up)(v3 — U3)]. (41)

Squaring (41) on both sides and substituting into the right hand side of (31), the integ
containing the odd powers of — u;, i =1, 2, 3, vanish and we get

1 1 lv — uf? 2
2 _ 21— ul? —

(t11 + 122)?

—i—il(v —u )4+222(v2—U2)4+
4t 4 4

+ T122(U1 — up)?(v2 — Up)?

+ 125(v2 — Up)%(v3 — U3)? + t5(v1 — Up)?(v3 — U3)?

|U_U|2 2
+ [q|T12|v — u| cosd 5RT —1)(vy—uy)
|U_U|2 2
+ [q|t22|v — u| cosd SRT —1)(v2—up)
—ul?
—|Q|(T11+t22)lv—U|0089(|v5RT| —1)(03—U3)2

711722 711(T11 + T22)

2

+ (v1 — U)?(vp — Up)? — (v1 — Up)?(vg — U3)?

 m22(Ta1 + T22)

2 (v2 — U2)?(v3 — Ua)zl e‘% dv. (42)
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Now, we compute each integral separately by transformiagu in spherical coordinates
and integrating. We get

i U*UZ
/ (i —u)2(vj — uj)?e” = dv = 27(RT)*V27RT,  i,j=123(#])
RS
u—uz
/ (i — u)%e" =T dv = 67(RT)3V27RT, i=123.
R3

Next, we consider the first integral of (42), in which we first transfarm u in spherical
coordinates in such a way that the polar angle is equal to the angle in a spherical coorc
system between — u andq, that is,#. Then, we have

—uf]? 2 4
/|v—u|200529 v —ul —1) e % dv = “Z(RT)2V22RT
®3 5RT 5

lv—ul? ey .
/R3|v—u|cosf)( ERT — 1) —u)2em dv=0 i=123

Now, substituting all the values of the integrals in (42) and simplifying, we get

1 VALIG
gl = (ORT)? Eg—lT +1h+ T+ TuTe + th+ T+ 7123}

1 (2197 1
= ORT? 5% +3 (T2 + 15+ (1 + 122)7) + T+ T+ 755

Lq2laf L.
= | = — — T ,
(pRT2|[5RT ' 2" 'E

where we use the relatioﬁfz1 7ii =0.
Therefore, we have

2192 1 12
lal ||r||'é}, (43)

1
ol = m[§ﬁ+§

where||z||e is the Euclidean norm of the stress tensor matrix

The quantity||¢|| gives a criterion for a local thermal equilibrium, which identifies
Boltzmann and Euler cells during the simulation of the Boltzmann or Euler code. If 1
qguantity||¢|| is very small compared to unity, we assume that a particle system is very cl
to a local Maxwellian. This criterion consists of the heat flux vegtand the shear stress
tensorz, which have to be vanished in order to yield the closure relations for the EL
equations [7]. These quantities vanish if the particle distribution is Maxwellian. Therefc
the higher the norm of obtained in (43), the more a particle system deviates from
Maxwellian distribution.

If we do not take into account the shear stress tensor, we have

_Z
e \@W' (44)
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We takeR = 1 for the sake of simplicity. In the case of Navier—Stokes equations we use
Fourier law

q=—kVT,

wherek is the heat conduction coefficient. We substitute this value in (44) and get

1ol < SVTT
S

In the kinetic theory for a hard spheteis proportional to,/T and also the mean free path
A is inversely proportional to the density Therefore, we can write

AVT]
¢l < C——.

(45)
whereC is a constant. This is exactly the same criterion of a local thermal equilibriu
which is used in Refs. [5, 13, 16].

Similarly, if we neglect the effect of the heat flux vector in the criterion given by (4:
we obtain|¢| equal to the quantity used in Ref. [14] as a criterion for a local thernr
equilibrium.

The use of both the heat flux and the shear stress tensor gives a correct domain dec
sition. As we solve the Boltzmann and Euler equations by particle methods, it is very e
to compute the heat flux vector and the stress tensor, that is, the criterion represent
(43). If the quantityl|¢ || is less than a small number, then, we assume that the cell is a El
cell, otherwise, a Boltzmann one. The small number depends on the number of particle
cell at the initial time and other input parameters, like the Mach number. This quantity gi
the correct domain decomposition for the Boltzmann and Euler equations and is displ
in Fig. 4.

4. NUMERICAL RESULTS

4.1. A Spatial Homogeneous Relaxation Case

First, we check the above criterion by considering a spatial homogeneous relax:
problem. Generally, a gas tends to approach a Maxwellian distribution due to intermc
ular collisions as expressed by Boltzmanhkistheorem. This implies that if we start the
simulation of the spatial homogeneous Boltzmann equation with a non-Maxwellian dis
bution as an initial condition, the quantify|| is usually large at the initial time=0 and
decreases to a small number as time increases. As the distribution function relaxes
equilibrium, the quantityj¢ || becomes smaller and smaller as shown in Fig. 1.

We consider the spatial homogeneous Boltzmann equation

af
=D (46)

with the initial condition

£(0, v) P (e‘ = e—"—“ﬁ) 47)
V) = ————=—= 2RT 2RT .
2(27 RT)3/2
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FIG.1. |¢| for 1000 particles.

As timet tends to infinity, the solution of the problems (46)—(47) tends to an equilibric
distribution with the density, mean velocity, and the temperature obtained from the in
value f (0, v). Therefore, the quantitjp| must decrease to a small constant as time ten
to infinity.

We solve the problems (46)—(47) by the particle method, developed at the Universit
Kaiserslautern, Germany. The simulation is performed with 1000 particles. At each t
step we compute the quantify| and then collisions. In Fig. 1 we observe that the quanti
ll¢|| decreases asymptotically to a very small constant as time advances.

4.2. The Coupling of the Boltzmann and Euler Equations in the 2D Case

Our main objective is to apply the above criterion as a switching criterion from the EL
code to the Boltzmann code and vice versa. We considered a two dimensional flow
perfect monoatomic gas flowing at hypersonic speed around an ellipse with major and n
axes 10m and Q5m, respectively. The computational domdinis a rectangle with size
6m x 4m as shown in Fig. 2.

As an initial condition we use the following Maxwellian distribution

Poo _ lv—usel?

R “8)

f (O, x,v) =

and the following boundary conditions:

(i) diffuse reflection with complete thermal accommodation at the bouridary
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f!

L

FIG. 2. Computational domain.

(i) on I’y aningoing function of the form

Poo _ -uxol?
@R )

f(t,x,v) =

(iii) non-reflecting boundary conditions at the other three boundaries

We divided the computational domaininto many rectangular cells of the size of the globe
mean free path, thatidx = A. We have chosen the time stAp = dx/|u|, and computed
until the steady state is reached.

The Coupling Algorithm. From Section 2 we see that the only difference between s
ving the Boltzmann and Euler equations is the treatment of collisions and projection |
cedures after free flow at the end of time stefp The advantage of using the particle codk
for the Euler equations is that one can easily adjust the Euler solver in the particle cod
the Boltzmann equation. We have the following coupling algorithm:

(i) Approximate the initial distribution function by Dirac masses.
(iiy Fortime step 1td:
e Generate particles having a Maxwellian distribution in the velocity space an
uniform distribution in the physical one at the boundary cells.
e Advance the particles in a free flow

X (t + At) = X (t) + At - v (1).

e If the particle collides with the surface boundary, then, we reflect it according
a boundary condition and continue the free flow with a new velocity uitil
is over.
e Erase the particles that leave the domain.
(iii) Check whether the cells are either Euler or Boltzmann cells using the criter
described in the next section.
(iv)(a) Consider intermolecular collisions in Boltzmann cells.
(iv)(b) Project the distribution function into a local thermal equilibrium in Euler cells.
(v) Go to step (ii).

The input parameters are the following: at infinity the characteristics of the flow
Uso = (UXy, 0, 0) with ux,, =4126 m/s T, = 200K, gas constanR =208 Jkg/K which
approximately corresponds to a Mach number 15. Furthermore, the temperature o
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'normph'l‘

FIG. 3. ||¢| on 20th row at at steady state.

FIG. 4. The domain decomposition of Boltzmann and Euler equations. In the upper half the domain dec
position is shown at time steps 10 (left) and 25 (right) and in the lower half for time steps 50 (left) and 100 (rig
White and gray domains represent the Boltzmann and Euler ones.



COUPLING BOLTZMANN AND EULER EQUATIONS 723

body Ty = 1000 K, angle of attack 30°, the number of particles per cell at the beginnin
N =50, the mean free path= 0.1m and the total time steds = 400.

As in the space homogeneous case we plot the value of the|#gfrinom (43). In Fig. 3
we have plotted, in a steady state, the value of this quantity on the middle row. We obse
that this value is small in front of the bow shock and is large in the shock region, on the s
boundary and in the wake. Between the bow shock and the solid boundary this quant
also low. On the ellipse we puy || equal to 0.

As a criterion of a local thermal equilibrium we assume thalgifl is less than 0.4 in
each cell, the cell is a Euler cell, otherwise, a Boltzmann one. Then, we do collision
the Boltzmann cells and regenerate the particles according to a local thermal equilib
in Euler cells. As a local thermal equilibrium function we have considered the funttion
We perform the above processes in every cell and at every time step.

=

[=]

=

(=}
o

-2 -2 4

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

FIG. 5. Contour plots of densities (row 1), temperatures (row 2), and Mach numbers (row 3) obtained f
both the codes. Pictures on the left are from the pure Boltzmann code and those on the right are from the co
code.
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FIG. 6. Densities on the middle row obtained from both codes.

The tuning parameter dfg| is not a global one. It depends upon users and the inf
parameters. In a particle simulation for the Boltzmann equation a number of particles
cell depends on the capacity of the computer memory. Usually one considers 30 par
per cell. In this case the criterion [ || also gives similar results, but with a different tuning
parameter. For the same estimate with a small number of particles one might get a |:
Boltzmann domain than that given in Fig. 4.

In the beginning we find all the cells are Euler cells. As the time increases, the Boltzm
and Euler domains separate automatically. We have plotted such domain decompos
in time steps 10, 25, 50, and 100. The white part indicates the Boltzmann domain anc
gray part that of Euler as shown in Fig. 4.

Our reference solution is the solution of the pure Boltzmann code. We compare there
of the coupling code with those of the pure Boltzmann code. In Fig. 5 we have plotted
density, temperature, and the Mach number for the coupling and pure Boltzmann code
have noted that the results are similar. Further, in Fig. 6 we have plotted the density a
the middle row (20th row) of the computational domain. The values of the density obtai
from both codes are almost the same. In Fig. 7 we have plotted again the densities
both codes along the 7th row of the computational domain. We see that the error is not
large.

Finally, in Fig. 8 we have plotted the temperature raijd., along the middle of the
computational domain by both codes. All of these figures show that the results obta
from the coupling code are very close to those of the Boltzmann one. In this simulal
the computational cost for the coupling code is 20% lower than that of the pure Boltzm
code.
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‘Boltzmann’ —
‘coupling’ ----

1

FIG. 7.

Densities on the 7th row (from below) obtained from both codes.

'Boltzmann’ ~—
‘coupling’ ----

FIG. 8. Temperature ratios obtained from both codes.
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