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A criterion for automatic domain decomposition has been introduced for the
coupling of the Boltzmann and Euler equations. This criterion is obtained by
using the Grad’s 13-moments expansion method. The Boltzmann and Euler equa-
tions have been solved by the particle method. This criterion has been further tested
for the spatial homogeneous relaxation case and the coupling of the Boltzmann and
Euler equations in two dimensional physical space. Some numerical results obtained
from the particle code of the full Boltzmann equation are compared with those of
coupling of the Boltzmann and Euler equations.c© 1998 Academic Press

1. INTRODUCTION

In the kinetic theory of gases the Boltzmann equation gives the accurate description of
a rarefied gas flow. To predict a hypersonic flow past a body flying at high altitude one
considers usually the Boltzmann equation. Due to the complexity of this equation one has
to solve it by some numerical methods. The most widely used numerical methods for the
Boltzmann equation are particle methods, like the Direct Simulation Monte Carlo Method
(DSMC) [2], the Finite Pointset Method (FPM) [1, 17], and some weighted particle methods
[18, 19]. In the case of particle methods the mean free path of a particle (the average distance
traveled by a molecule between collisions) is an important parameter. For example, in the
reentry phase of the space shuttle into the atmosphere the gas becomes denser and denser
so that the mean free path becomes smaller and smaller, which leads to a high computation
time of a particle code for the Boltzmann equation. In fact, in the discretization of the
Boltzmann equation a mesh size and a time step are proportional to the mean free path due
to stability and accuracy of the numerical solution.

From the classical theory, as the mean free path tends to zero, the solution of the Boltzmann
equation tends to a local Maxwellian distribution, in which the parameters are the ap-
proximate solutions of the compressible Euler equations. But in this regime, there are
some regions, where the particle distribution function is far from a local Maxwellian
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distribution so that the limiting equations are not valid everywhere. In such a situation,
one has to solve the Boltzmann equation only where it is necessary and the limiting
equations wherever possible. This gives rise to two problems. The first one is to deter-
mine the domains of validity for these equations and the second is to solve these equations
in the corresponding domains of validity. This means that the first problem corresponds to
the domain decomposition of the Boltzmann and fluid dynamic equations and the second to
solving matching (or coupling) problems. Moreover, one has to choose the suitable numeri-
cal methods for matching these two equations. Therefore the challenging task is to develop
a hybrid code, which switches automatically from the fluid dynamic code to the Boltzmann
code and vice versa.

In the past ten years many works have been reported with reference to both prob-
lems. In the coupling of the Boltzmann and Euler equations or that of Boltzmann and
Navier–Stokes equations most of the authors have decomposed the computational domain
a priori [15, 3, 4, 12, 20]. They assumed a Boltzmann domain in the vicinity of the body and
that of Euler or Navier–Stokes away from the body. During the simulation of these equations
the corresponding domains of validity do not remain fixed as shown in Fig. 4. Therefore,
one needs criteria for domain decomposition. Tiwariet al. [22] have proposed the Sobolev
norm as a criterion for the same. This criterion gives a correct domain decomposition, but
its computational cost is very high compared to the criterion proposed in this paper [21].

The main objective of this paper is to develop a criterion for domain decomposition
which has a low computational cost in comparison to the Sobolev norm and gives the
required results. We have used the criterion which is obtained from Grad’s 13-Moments
expansion and can be monitored during the simulation. This criterion gives the suitable
domain decomposition of the Boltzmann and fluid dynamic equations. We restrict ourselves
to the coupling of the Boltzmann and Euler equations.

We organize the paper as follows. In Section 2, we give a short description of the
Boltzmann and Euler equations and their numerical methods. In Section 3 we derive a
criterion for a local thermal equilibrium. Finally, the coupling algorithm and some of the
numerical results are given in Section 4.

2. THE EQUATIONS TO BE COUPLED AND NUMERICAL METHODS

2.1. The Boltzmann and Euler Equations

The Boltzmann equation is the time evolution of a distribution functionf (t, x, v) for
particles of velocityv ∈ R3, at pointx ∈ Ä ⊂ Rd (d = 1, 2, 3), at a timet ∈ R+ and is
given by

∂ f

∂t
+ v · ∇x f = 1

ε
J( f, f ), (1)

with

J( f, f ) =
∫
R3

∫
S2

+
k(|v − w|, η)[ f (t, x, v′) f (t, x, w′) − f (t, x, v) f (t, x, w)] dω(η) dw,

where

v′ = Tv,w(η) = v − η〈η, v − w〉, w′ = Tw,v(η), (2)
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η ∈ S2
+ = {η ∈ R3/|η| = 1, 〈v − w, η〉 ≥ 0}, k(|v − w|, η) is the collision scattering kernel,

which describes the actual interaction potential. We have considered the hard sphere model
which is given by

k(|v − w|, η) = 〈v − w, η〉 ≥ 0.

The constantε is proportional to the mean free pathλ. For more detail about the Boltzmann
equation, we refer to [7]. Ifε approaches zero, one can prove [6] that the Boltzmann
distribution functionf tends to a local Maxwellian

fM := fM [ρ, u, T ](t, x) = ρ

(2π RT)3/2
e− |v−u|2

2RT , (3)

whereR denotes the gas constant and the parametersρ(t, x), u(t, x), T(t, x) approximate
the compressible Euler equations:

∂ρ

∂t
+

d∑
j =1

∂

∂xj
(ρu j ) = 0 (4)

∂

∂t
(ρui ) +

d∑
j =1

∂

∂xj
(ρui u j ) + ∂(ρRT)

∂xi
= 0 (1 ≤ i ≤ d) (5)

∂

∂t

(
ρ

(
1

2
|u|2 + 3

2
RT

))
+

d∑
j =1

∂

∂xj

[
ρu

(
1

2
|u|2 + 5

2
RT

)]
= 0. (6)

In the coupling of these equations when we solve both of them by the particle methods, we
can use the same initial and boundary conditions. The initial condition is given by

f (0, x, v) = f0(x, v). (7)

2.2. The Boltzmann Solver

We solve the Boltzmann equation by a particle method proposed by Babovsky [1] and
described in [17]. The particle scheme for this equation is based on the time splitting of the
equation. The first step consists of solving the free transport equation in 0≤ t < 1t

∂ f

∂t
+ v · ∇x f = 0 (8)

and the second consists of solving the equation

∂ f

∂t
= 1

ε
J( f, f ). (9)

The particle simulation of (8) is based on the approximation of the initial densityf0(x, v)

by a discrete measure (a sum of Dirac masses)

f0(x, v) ≈
N∑

i =1

αi δ(x − xi (0))δ(v − vi (0)), (10)
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whereN is the number of particles with weightsαi . We have normalized the total mass of
particles to 1 and considered the equal weight of all particles so thatαi = 1/N for all i . The
positionsxi (1t) of particles change (during the free flow only) as per the following relation

xi (1t) = xi (0) + 1t · vi (0), (11)

where velocities change during the collision step. In the free flow step one has to consider
boundary conditions.

For the simulation of (9) we introduce a spatial mollifier since the collision integral
J( f, f ) is a local operator in space and time. We divide the computational domain into
many regular cellsC where the densityf (t, x, v) is substituted byfC(t, v) for x ∈ C and

fC(t, v) = 1

Vol(C)

∫
C

f (t, y, v) dy. (12)

Now, it is sufficient to describe the particle simulation of the following spatially homoge-
neous Boltzmann equation

∂ f

∂t
= 1

ε
J( f, f ). (13)

For the sake of simplicity, we rewritef instead of fC. To derive the particle scheme for
(13) we used the explicit Euler discretization and obtained

f (1t, v) = f (0, v) + 1t
1

ε
J( f, f )(0, v). (14)

To obtain a particle approximation one has to consider the weak formulation of (14) by
multiplying by a test function8 and integrate it with respect tov∫

R3
8(v) f (1t, v) dv =

∫
R3

8(v) f (0, v) dv + 1t
∫
R3

8(v)J( f, f )(0, v) dv. (15)

Now, assuming that‖ f ‖ = 1 and using the decompositionJ( f, f ) = J+( f ) − f L( f ), we
have ∫

R3
8(v) f (1t, v) dv =

∫
R3

∫
R3

8(v) f (0, v) f (0, w) dw dv

+ 1t
∫
R3

8(v)J+( f )(0, v) dv

− 1t
∫
R3

8(v)L( f )(0, v) dv, (16)

where

J+( f ) = 1

ε

∫
R3

∫
S2

+
k(|v − w|, η) f (0, v′) f (0, w′) dω(η) dw

L( f ) = 1

ε

∫
R3

∫
S2

+
k(|v − w|, η) f (0, w) dw(η) dw.
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In the integral over the gain termJ+ we can use the collision transformations (2) to change
the variable(v, w) into (v′, w′) and obtain∫

R3

∫
R3

8(v)k(|v − w|, η) f (0, v′) f (0, w′) dw dv

=
∫
R3

∫
R3

8(v′)k(|v − w|, η) f (0, v) f (0, w) dw dv. (17)

From (16) and (17) we obtain∫
R3

8(v) f (1t, v) dv

=
∫
R3

∫
R3

∫
S2

+
8(v)(1 − 1t k(|v − w|, η)) f (0, v) f (0, w) dω(η) dw dv

+
∫
R3

∫
R3

∫
S2

+
8(v′)1t k(|v − w|, η) f (0, v) f (0, w) dω(η) dw dv. (18)

In order to guarantee the positivity of the functionf (1t, v) we need the restriction on time
step which must satisfy

1 − 1t

ε
k(|v − w|, η) ≥ 0. (19)

Assuming the condition (19), we introduce an artificial variables on the interval [0, 1] and
a appropriate mapping9 to transform (18) into∫

R3
8(v) f (1t, v) dv

=
∫
R3

∫
R3

∫
S2

+

∫
[0,1]

(8 ◦ 9)(v, w, η, s) f (0, v) f (0, w) ds dω(η) dw dv, (20)

where

9(v, w, η, s) =
{

v′, if 1tk(|v − w|, η) ≤ s
v, else.

(21)

This leads to the following time discretized equation for the corresponding measures

µ1t = (µ0 × µ0 × ω × ν) ◦ 9−1, (22)

whereω denotes the surface measure onS2
+ andν the uniform measure on [0, 1].

For a particle simulation we considered first a particle setµ0, which yielded an approxi-
mation of f (0, v), i.e.,

f (0, v) ≈ δµ0 = 1

N

N∑
i =1

δ(v − vi (0)), (23)
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where all particles have equal weight 1/N. Next, one approximates the product measure
µ1t with the help ofµ0. For details of this procedure we refer to [1, 17].

2.3. The Euler Solver

We solve the Euler equations also by the particle method based on the kinetic scheme.
Earlier workers [8, 9, 11], have reported this scheme in detail. It is the direct consequence
of the solution scheme for the Boltzmann equation. The main idea of the kinetic scheme is
that one considers the problem on a kinetic level or in a position-velocity space and defines
the macroscopic quantities as moments of the densityf (t, x, v) by

ρ(t, x) =
∫
R3

f (t, x, v) dv, (24)

ρu(t, x) =
∫
R3

v f (t, x, v) dv, (25)

T(t, x) = 1

3ρR

∫
R3

|v − u|2 f (t, x, v) dv, (26)

finding a simple evolution for the densityf such that this evolution approximates the
compressible Euler equations forρ, u, andT . This evolution also consists of two steps as
in the case of the Boltzmann equation. The first free flow step is exactly the same as in the
case of the Boltzmann equation. In the second step we consider the relaxation.

J( f, f ) = 0, (27)

where the solution of the Boltzmann equation is relaxed to a thermodynamic equilibrium
(a local Maxwellian) whose parameters solve the compressible Euler equations. In this
step we compute the macroscopic quantitiesρ, u, T as moments of the solution of the
free transport equation and then generate the particles according to a local equilibrium
distribution function such that the conservations of mass, momentum, and energy hold. As
an equilibrium distribution function one considers usually a Maxwellian. The computational
time for a generation of particles according to a Maxwellian is larger than the collision
process. In this case, an equilibrium distribution function proposed by Kaniel is more
convenient. The numerical results obtained from both functions are very close. The function,
for a monoatomic gas, proposed by Kaniel, is given by [11]

fK =
{

3
4π

ρ

(5RT)3/2 , |v − u| ≤ √
5RT

0, |v − u| >
√

5RT.
(28)

3. THE CRITERIA FOR A LOCAL THERMAL EQUILIBRIUM

Since the Euler equations can be approximated from the Boltzmann equation if particles
are distributed according to a local Maxwellian or near enough to it, we need a test to
determine whether a particle distribution is close enough to a local Maxwellian, that is, in
a local thermal equilibrium, or not.
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For a criterion of equilibrium, we assume that the distribution functionf (t, x, v) deviates
from a local Maxwellian. Suppose

f = fM(1 + φ). (29)

Local thermal equilibrium can be assumed if‖φ‖ ¿ 1, with some appropriate norm. This
suggests defining a Hilbert space, where the scalar product is [7]

〈φ, ψ〉 =
∫
R3

fM

ρ
φψ dv (30)

and the corresponding norm is given by

‖φ‖ =
( ∫

R3

fM

ρ
|φ|2 dv

)1/2

. (31)

While deriving fluid dynamic equations from the Boltzmann equation, the moments can be
defined by [7]

ρ =
∫
R3

f dv, ρu =
∫
R3

v f dv, ρE =
∫
R3

|v|2
2

f dv (32)

q = 1

2

∫
R3

(v − u)|v − u|2 f dv, τ =
∫
R3

(v − u)(v − u)t f dv − pδi j , (33)

whereE is the specific energy,q is the heat flux vector,τ the stress tensor,p the static
pressure, andδi j is the Kronecker symbol.(v−u)t denotes the transpose of the vectorv−u.
We assume that the first five momentsρ, u, E of f are those offM . Then∫

R3
φ fM dv = 0 (34)∫

R3
vφ fM dv = 0 (35)∫

R3
|v|2φ fM dv = 0. (36)

We also have

1

2

∫
R3

(v − u)|v − u|2φ fM dv = q (37)∫
R3

(v − u)(v − u)tφ fM dv = τ. (38)

The non-vanishing of the stress tensorτ and the heat flux vectorq are due to deviation
from a Maxwellian distribution. Thus,φ fM describes the deviation from a Maxwellian
distribution.

With the help of the above 13 equations (34)–(38) we intend to expressφ in a polynomial,

φ = a + 〈b, v − u〉 + (v − u)tC(v − u) + 〈d, v − u〉|v − u|2, (39)

wherea is a scalar,b, d are vectors inR3, andC is a(3 × 3) symmetric matrix.
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This is the Grad’s 13 moments expansion method [10]. Now, substitutingφ in (34)–(38)
one can compute all the coefficients of the polynomial (39) and gets [21]

φ = 〈q, v − u〉
ρ(RT)2

[ |v − u|2
5RT

− 1

]
+ 1

2ρ(RT)2

[
τ11(v1 − u1)

2 + τ22(v2 − u2)
2

− (τ11 + τ22)(v3 − u3)
2
] + 1

ρ(RT)2
[τ12(v1 − u1)(v2 − u2)

+ τ23(v2 − u2)(v3 − u3) + τ13(v1 − u1)(v3 − u3)]. (40)

We are interested in estimating the quantity‖φ‖ with the help of the norm defined in (31).
In order to calculate the integral on the right hand side of (31), we write (40) in the form

φ = 1

ρ(RT)2

[
|q| |v − u| cosθ

( |v − u|2
5RT

− 1

)]
+ 1

2ρ(RT)2

[
τ11(v1 − u1)

2

+ τ22(v2 − u2)
2 − (τ11 + τ22)(v3 − u3)

2
] + 1

ρ(RT)2
[τ12(v1 − u1)(v2 − u2)

+ τ23(v2 − u2)(v3 − u3) + τ13(v1 − u1)(v3 − u3)]. (41)

Squaring (41) on both sides and substituting into the right hand side of (31), the integrals
containing the odd powers ofvi − ui , i = 1, 2, 3, vanish and we get

‖φ‖2 = 1

ρ2(RT)4

1

(2π RT)3/2

∫
R3

[
|q|2|v − u|2 cos2 θ

( |v − u|2
5RT

− 1

)2

+ τ 2
11

4
(v1 − u1)

4 + τ 2
22

4
(v2 − u2)

4 + (τ11 + τ22)
2

4
+ τ 2

12(v1 − u1)
2(v2 − u2)

2

+ τ 2
23(v2 − u2)

2(v3 − u3)
2 + τ 2

13(v1 − u1)
2(v3 − u3)

2

+ |q|τ11|v − u| cosθ

( |v − u|2
5RT

− 1

)
(v1 − u1)

2

+ |q|τ22|v − u| cosθ

( |v − u|2
5RT

− 1

)
(v2 − u2)

2

− |q|(τ11 + τ22)|v − u| cosθ

( |v − u|2
5RT

− 1

)
(v3 − u3)

2

+ τ11τ22

2
(v1 − u1)

2(v2 − u2)
2 − τ11(τ11 + τ22)

2
(v1 − u1)

2(v3 − u3)
2

− τ22(τ11 + τ22)

2
(v2 − u2)

2(v3 − u3)
2

]
e− |v−u|2

2RT dv. (42)
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Now, we compute each integral separately by transformingv − u in spherical coordinates
and integrating. We get∫

R3
(vi − ui )

2(v j − u j )
2e− |v−u|2

2RT dv = 2π(RT)3
√

2π RT, i, j = 1, 2, 3(i 6= j )

∫
R3

(vi − ui )
4e− |v−u|2

2RT dv = 6π(RT)3
√

2π RT, i = 1, 2, 3.

Next, we consider the first integral of (42), in which we first transformv − u in spherical
coordinates in such a way that the polar angle is equal to the angle in a spherical coordinate
system betweenv − u andq, that is,θ . Then, we have

∫
R3

|v − u|2 cos2 θ

( |v − u|2
5RT

− 1

)2

e− |v−u|2
2RT dv = 4π

5
(RT)2

√
2π RT

∫
R3

|v − u| cosθ

( |v − u|2
5RT

− 1

)
(vi − ui )

2e− |v−u|2
2RT dv = 0, i = 1, 2, 3.

Now, substituting all the values of the integrals in (42) and simplifying, we get

‖φ‖2 = 1

(ρRT)2

[
2

5

|q|2
RT

+ τ 2
11 + τ 2

22 + τ11τ22 + τ 2
12 + τ 2

23 + τ 2
13

]

= 1

(ρRT)2

[
2

5

|q|2
RT

+ 1

2

(
τ 2

11 + τ 2
22 + (τ11 + τ22)

2
) + τ 2

12 + τ 2
23 + τ 2

13

]

= 1

(ρRT)2

[
2

5

|q|2
RT

+ 1

2
‖τ‖2

E

]
,

where we use the relation
∑3

i =1 τi i = 0.
Therefore, we have

‖φ‖ = 1

ρRT

[
2

5

|q|2
RT

+ 1

2
‖τ‖2

E

]1/2

, (43)

where‖τ‖E is the Euclidean norm of the stress tensor matrixτ .
The quantity‖φ‖ gives a criterion for a local thermal equilibrium, which identifies

Boltzmann and Euler cells during the simulation of the Boltzmann or Euler code. If the
quantity‖φ‖ is very small compared to unity, we assume that a particle system is very close
to a local Maxwellian. This criterion consists of the heat flux vectorq and the shear stress
tensorτ , which have to be vanished in order to yield the closure relations for the Euler
equations [7]. These quantities vanish if the particle distribution is Maxwellian. Therefore,
the higher the norm ofφ obtained in (43), the more a particle system deviates from a
Maxwellian distribution.

If we do not take into account the shear stress tensor, we have

‖φ‖ =
√

2

5

|q|
ρ(RT)3/2

. (44)
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We takeR= 1 for the sake of simplicity. In the case of Navier–Stokes equations we use the
Fourier law

q = −k∇T,

wherek is the heat conduction coefficient. We substitute this value in (44) and get

‖φ‖ ≤ k|∇T |
ρT3/2

.

In the kinetic theory for a hard sphere,k is proportional to
√

T and also the mean free path
λ is inversely proportional to the densityρ. Therefore, we can write

‖φ‖ ≤ C
λ|∇T |

T
, (45)

whereC is a constant. This is exactly the same criterion of a local thermal equilibrium,
which is used in Refs. [5, 13, 16].

Similarly, if we neglect the effect of the heat flux vector in the criterion given by (43),
we obtain‖φ‖ equal to the quantity used in Ref. [14] as a criterion for a local thermal
equilibrium.

The use of both the heat flux and the shear stress tensor gives a correct domain decompo-
sition. As we solve the Boltzmann and Euler equations by particle methods, it is very easy
to compute the heat flux vector and the stress tensor, that is, the criterion represented by
(43). If the quantity‖φ‖ is less than a small number, then, we assume that the cell is a Euler
cell, otherwise, a Boltzmann one. The small number depends on the number of particles per
cell at the initial time and other input parameters, like the Mach number. This quantity gives
the correct domain decomposition for the Boltzmann and Euler equations and is displayed
in Fig. 4.

4. NUMERICAL RESULTS

4.1. A Spatial Homogeneous Relaxation Case

First, we check the above criterion by considering a spatial homogeneous relaxation
problem. Generally, a gas tends to approach a Maxwellian distribution due to intermolec-
ular collisions as expressed by Boltzmann’sH -theorem. This implies that if we start the
simulation of the spatial homogeneous Boltzmann equation with a non-Maxwellian distri-
bution as an initial condition, the quantity‖φ‖ is usually large at the initial timet = 0 and
decreases to a small number as time increases. As the distribution function relaxes to an
equilibrium, the quantity‖φ‖ becomes smaller and smaller as shown in Fig. 1.

We consider the spatial homogeneous Boltzmann equation

∂ f

∂t
= J( f, f ) (46)

with the initial condition

f (0, v) = ρ

2(2π RT̂)3/2

(
e− |v−û|2

2RT̂ + e− |v+û|2
2RT̂

)
. (47)
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FIG. 1. ‖φ‖ for 1000 particles.

As time t tends to infinity, the solution of the problems (46)–(47) tends to an equilibrium
distribution with the density, mean velocity, and the temperature obtained from the initial
value f (0, v). Therefore, the quantity‖φ‖ must decrease to a small constant as time tends
to infinity.

We solve the problems (46)–(47) by the particle method, developed at the University of
Kaiserslautern, Germany. The simulation is performed with 1000 particles. At each time
step we compute the quantity‖φ‖ and then collisions. In Fig. 1 we observe that the quantity
‖φ‖ decreases asymptotically to a very small constant as time advances.

4.2. The Coupling of the Boltzmann and Euler Equations in the 2D Case

Our main objective is to apply the above criterion as a switching criterion from the Euler
code to the Boltzmann code and vice versa. We considered a two dimensional flow of a
perfect monoatomic gas flowing at hypersonic speed around an ellipse with major and minor
axes 1.0m and 0.5m, respectively. The computational domainÄ is a rectangle with size
6m × 4m as shown in Fig. 2.

As an initial condition we use the following Maxwellian distribution

f (0, x, v) = ρ∞
(2π RT∞)3/2

e− |v−u∞|2
2RT∞ (48)

and the following boundary conditions:

(i) diffuse reflection with complete thermal accommodation at the boundary03,
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FIG. 2. Computational domain.

(ii) on 01 an ingoing function of the form

f (t, x, v) = ρ∞
(2π RT∞)3/2

e− |v−u∞|2
2RT∞ , (49)

(iii) non-reflecting boundary conditions at the other three boundaries02.

We divided the computational domainÄ into many rectangular cells of the size of the global
mean free path, that is,dx= λ. We have chosen the time step1t = dx/|u∞|, and computed
until the steady state is reached.

The Coupling Algorithm. From Section 2 we see that the only difference between sol-
ving the Boltzmann and Euler equations is the treatment of collisions and projection pro-
cedures after free flow at the end of time step1t . The advantage of using the particle code
for the Euler equations is that one can easily adjust the Euler solver in the particle code for
the Boltzmann equation. We have the following coupling algorithm:

(i) Approximate the initial distribution function by Dirac masses.
(ii) For time step 1 toL:

• Generate particles having a Maxwellian distribution in the velocity space and a
uniform distribution in the physical one at the boundary cells.

• Advance the particles in a free flow

xi (t + 1t) = xi (t) + 1t · vi (t).

• If the particle collides with the surface boundary, then, we reflect it according to
a boundary condition and continue the free flow with a new velocity until1t
is over.

• Erase the particles that leave the domain.
(iii) Check whether the cells are either Euler or Boltzmann cells using the criterion

described in the next section.
(iv)(a) Consider intermolecular collisions in Boltzmann cells.
(iv)(b) Project the distribution function into a local thermal equilibrium in Euler cells.
(v) Go to step (ii).

The input parameters are the following: at infinity the characteristics of the flow are
u∞ = (ux∞, 0, 0) with ux∞ = 4126 m/s, T∞ = 200 K, gas constantR= 208 Jkg/K which
approximately corresponds to a Mach number 15. Furthermore, the temperature of the
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FIG. 3. ‖φ‖ on 20th row at at steady state.

FIG. 4. The domain decomposition of Boltzmann and Euler equations. In the upper half the domain decom-
position is shown at time steps 10 (left) and 25 (right) and in the lower half for time steps 50 (left) and 100 (right).
White and gray domains represent the Boltzmann and Euler ones.
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bodyTW = 1000 K, angle of attack= 30◦, the number of particles per cell at the beginning
N = 50, the mean free pathλ = 0.1m and the total time stepsL = 400.

As in the space homogeneous case we plot the value of the term‖φ‖ from (43). In Fig. 3
we have plotted, in a steady state, the value of this quantity on the middle row. We observed
that this value is small in front of the bow shock and is large in the shock region, on the solid
boundary and in the wake. Between the bow shock and the solid boundary this quantity is
also low. On the ellipse we put‖φ‖ equal to 0.

As a criterion of a local thermal equilibrium we assume that if‖φ‖ is less than 0.4 in
each cell, the cell is a Euler cell, otherwise, a Boltzmann one. Then, we do collisions in
the Boltzmann cells and regenerate the particles according to a local thermal equilibrium
in Euler cells. As a local thermal equilibrium function we have considered the functionfK .
We perform the above processes in every cell and at every time step.

FIG. 5. Contour plots of densities (row 1), temperatures (row 2), and Mach numbers (row 3) obtained from
both the codes. Pictures on the left are from the pure Boltzmann code and those on the right are from the coupling
code.
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FIG. 6. Densities on the middle row obtained from both codes.

The tuning parameter of‖φ‖ is not a global one. It depends upon users and the input
parameters. In a particle simulation for the Boltzmann equation a number of particles per
cell depends on the capacity of the computer memory. Usually one considers 30 particles
per cell. In this case the criterion of‖φ‖ also gives similar results, but with a different tuning
parameter. For the same estimate with a small number of particles one might get a larger
Boltzmann domain than that given in Fig. 4.

In the beginning we find all the cells are Euler cells. As the time increases, the Boltzmann
and Euler domains separate automatically. We have plotted such domain decompositions
in time steps 10, 25, 50, and 100. The white part indicates the Boltzmann domain and the
gray part that of Euler as shown in Fig. 4.

Our reference solution is the solution of the pure Boltzmann code. We compare the results
of the coupling code with those of the pure Boltzmann code. In Fig. 5 we have plotted the
density, temperature, and the Mach number for the coupling and pure Boltzmann code. We
have noted that the results are similar. Further, in Fig. 6 we have plotted the density along
the middle row (20th row) of the computational domain. The values of the density obtained
from both codes are almost the same. In Fig. 7 we have plotted again the densities from
both codes along the 7th row of the computational domain. We see that the error is not very
large.

Finally, in Fig. 8 we have plotted the temperature ratioT/T∞ along the middle of the
computational domain by both codes. All of these figures show that the results obtained
from the coupling code are very close to those of the Boltzmann one. In this simulation
the computational cost for the coupling code is 20% lower than that of the pure Boltzmann
code.
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FIG. 7. Densities on the 7th row (from below) obtained from both codes.

FIG. 8. Temperature ratios obtained from both codes.
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